

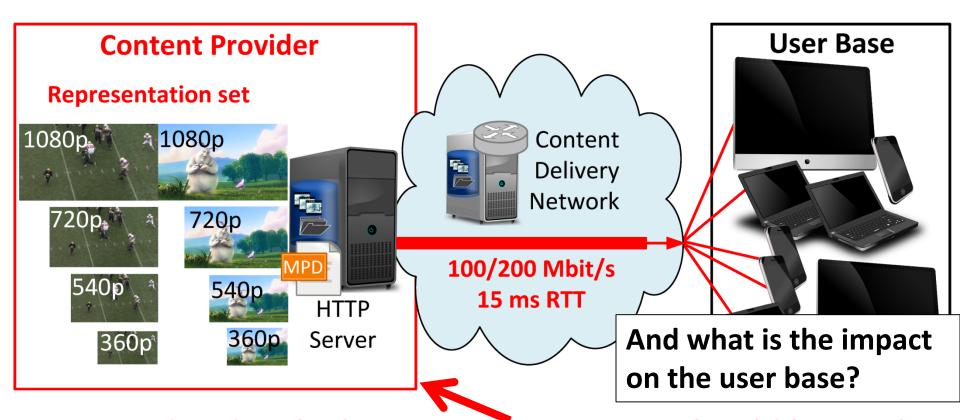
A COMPARATIVE STUDY OF DASH REPRESENTATION SETS USING REAL USER CHARACTERISTICS

C. Kreuzberger, B. Rainer, H. Hellwagner

Institute of Information Technology (ITEC)
Faculty of Technical Sciences (TEWI)
Alpen-Adria-Universität Klagenfurt (AAU), Austria

L. Toni, P. Frossard

Signal Processing Laboratory (LTS4) École polytechnique fédérale de Lausanne (EPFL), Switzerland


VIDEO STREAMING AND DASH

- Rapidly growing (> 60% of traffic at peak times)
- DASH: videos with various bitrates and resolutions (representations) on a per-segment basis
- Overall goal in video streaming (from the user's perspective): maximize Quality of Experience (QoE) by chosing representations based on restrictions of the user (e.g., bandwidth, spatial resolution, ...) and network conditions

Multimedia Streaming Scenario

How to decide which representation sets should be made available on the server side?

DASH REPRESENTATIONS IN THE WILD

Name	Resolution	Bit Rates [kbit/s]
YouTube	1080p (1920x1080) 720p (1280x720) 540p (960x540) 360p (640x360)	4,072 2,168 1,109 110 247 606
Netflix	1080p (1920x1080) 720p (1280x720) 540p (960x540) 360p (640x360)	4,300 5,800 2,350 3,000 1,050 1,750 235 375 560 750
Apple	1080p (1920x1080) 720p (1280x720) 540p (960x540) 360p (640x360)	11,000 24,000 39,000 2,500 4,500 1,800 110 200 400 600 1,200

Parsing MPD of 51k videos

Netflix Blog

Tech. Docu.

Table 3: Summary of recommended representation sets from YouTube (experiment), Netflix [9], and Apple [3].

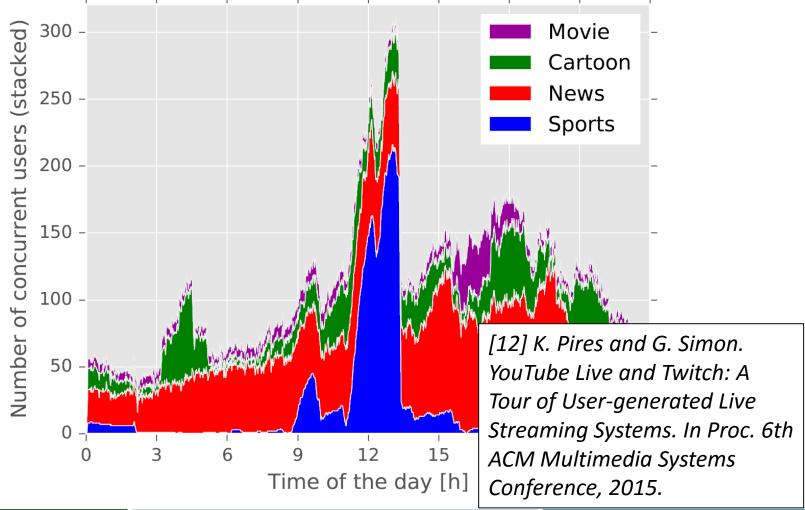
OPTIMIZED DASH REPRESENTATIONS

$\max_{\{\pmb{\tau}, \pmb{\alpha}, \pmb{\beta}, \pmb{\gamma}\}} \sum_{u \in \mathcal{U}} \sum_{v \in \mathcal{V}} \sum_{r \in \mathcal{R}} \sum_{s \in \mathcal{S}} f_{uvrs} \cdot \tau_{uvrs}$		(1a)
such that $\tau_{uvrs} \leq \alpha_{uvrs}$,	$u \in \mathcal{U}, v \in \mathcal{V}, r \in \mathcal{R}, s \in \mathcal{S}$	(1b)
$lpha_{uvrs} \leq eta_{vrs},$	$u \in \mathcal{U}, v \in \mathcal{V}, r \in \mathcal{R}, s \in \mathcal{S}$	(1c)
$eta_{vrs} \leq \sum_{u \in \mathcal{U}} lpha_{uvrs},$	$v \in \mathcal{V}, r \in \mathcal{R}, s \in \mathcal{S}$	(1d)
$\sum_{v \in \mathcal{V}} \sum_{s \in \mathcal{S}} \sum_{\substack{r' \in \mathcal{R} \\ r' \geq r}} au_{uvr's} \leq T_{ur},$	$u \in \mathcal{U}, r \in \mathcal{R}$	(1e)
$\sum_{r \in \mathcal{R}} \sum_{s \in \mathcal{S}} au_{uvrs} \leq \left\{egin{array}{ll} 1, & ext{if } v = v_u \ & \& \ s \in \{s_u - 1, s_u, s_u + 1\} \ 0, & ext{otherwise} \end{array} ight.$	$u \in \mathcal{U}, v \in \mathcal{V}$	(1f)
$(b_{vs}^{\min} - b_r) \cdot \tau_{uvrs} \leq 0,$	$u \in \mathcal{U}, v \in \mathcal{V}, r \in \mathcal{R}, s \in \mathcal{S}$	(1g)
$(b_r - b_{vs}^{\max}) \cdot au_{uvrs} \leq 0,$	$u \in \mathcal{U}, v \in \mathcal{V}, r \in \mathcal{R}, s \in \mathcal{S}$	(1h)
$\sum_{u \in \mathcal{U}} \sum_{v \in \mathcal{V}} \sum_{r \in \mathcal{R}} \sum_{s \in \mathcal{S}} b_r \cdot au_{udvrs} \leq C \cdot \mathcal{U} ,$		(1i)
$\sum_{v \in \mathcal{V}} \sum_{r \in \mathcal{R}} \sum_{s \in \mathcal{S}} eta_{vrs} \leq K,$		(1j)
$\sum_{u \in \mathcal{U}} \gamma_u \ge P \cdot \mathcal{U} ,$		(1k)
$\sum_{v \in \mathcal{V}} \sum_{r \in \mathcal{R}} \sum_{s \in \mathcal{S}} au_{uvrs} \geq T_{\min} \cdot \gamma_u,$	$u\in\mathcal{U}$	(1l)
$\tau_{uvrs} \in [0, 1],$	$u \in \mathcal{U}, v \in \mathcal{V}, r \in \mathcal{R}, s \in \mathcal{S}$	(1m)
$\alpha_{uvrs} \in \{0, 1\},$	$u \in \mathcal{U}, v \in \mathcal{V}, r \in \mathcal{R}, s \in \mathcal{S}$	(1n)
$eta_{vrs} \in \{0, 1\},$	$v \in \mathcal{V}, r \in \mathcal{R}, s \in \mathcal{S}$	(1o)

Integer Linear Program (ILP)

- Problems:
 - Mainly theoretical results
 - Static number of users

[16] Toni et al., "Optimal Selection of Adaptive Streaming Representations", ACM Transactions on Multimedia Computing Communications and Applications, 2015



OUR APPROACH

- Evaluate optimized and existing DASH representations
 - by modelling dynamic user behaviour (join/leave),
 - with realistic device and network characteristics,
 - and conducting extensive simulations using NS-3.
- Metrics
 - Average User Satisfaction [SSIM per screen resolution]
 - Average Goodput [kbit/s]

DYNAMIC USER BEHAVIOUR

DEVICE AND NETWORK CHARACTERISTICS

Device Type (Connection)	Screen Res.	c_{min}	c_{max}	p
Smartphone (3G, WiFi)	360p, 540p	0.4	4	21.4%
Tablet (3G, WiFi)	540p, 720p	0.4	4	14.8%
Laptop (ADSL)	720p, 1080p	0.7	10	32.1%
HDTV (FTTH, Cable)	720p, 1080p	1.5	25	31.7%

Table 1: Devices with available screen resolutions and min/max link capacities (c_{min}/c_{max}) expressed in Mbit/s. p denotes the distribution of those devices

[10] Nielsen Research, "Binging" is the New Viewing for Over-the-top Streamers, 2013 [16] Toni et al., "Optimal Selection of Adaptive Streaming Representations", ACM

Transactions on Multimedia Computing Communications and Applications, 2015

OPTIMIZED REPRESENTATIONS

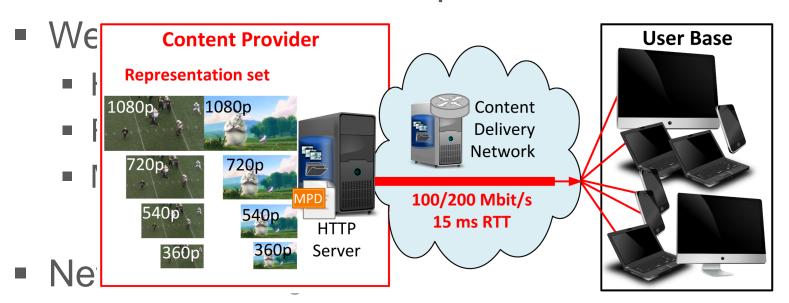
Video Id	Resol.	C100M-K24	C100M-K44				
		kbit/s	m kbit/s				
1	1080p	586	387 669				
	720p	-	344 606				
	540p	709	709				
	360p	$297\ 375$	$297\ 375\ 558$				
2	1080p 619 745 11	610 745 1100	526 619 745 1,042				
2		019 740 1190	1,380				
	720p	297 534 676 1,093	297 370 534 676				
	120p		777 1,093 1,361				
	540p	173 407 529 747	329 529 620 747				
			$1,\!242$				
	360p	315 568	220 315 568				
3	1080p	-	819				
	720p	761	533 761				
	540p	553	320 553 785				
	360p	245	245 595				
4	1080p	-	-				
	720p	-	1448				
	540p	669 1,081	570 669 798 1,081				
	360p	$289\ 561$	289 360 561				

 Computed using ILP [16] with device/network characteristics and dynamic user behaviour (previous two slides)

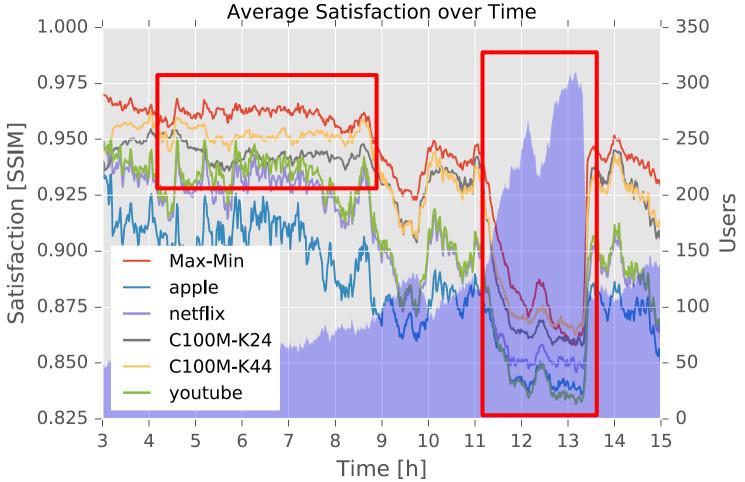
Table 5: Optimized representation sets [16], exemplified for C = 100 Mbit/s, K = 24 and K = 44 representations.

Kreuzberger et al.

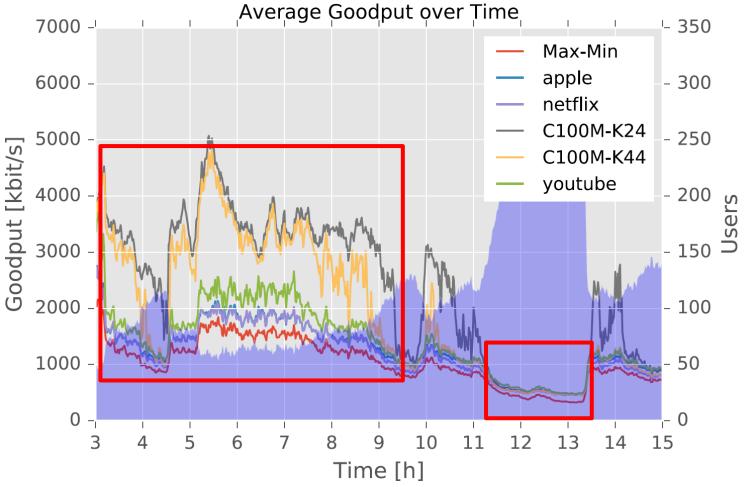
Upper Bound: Max-Min Model


- In general:
 - Discrete bitrates (e.g., 100, 200, 500, ... kbit/s)
 - Enables clients to maintain a local video playback buffer
- Upper bound: max-min model
 - Assumption: continous bitrates (0 20.000 kbit/s)
 - Distribute bandwidth among competitors on a besteffort principle (max-min fairness)
 - No local video playback buffer

NS-3 AND DASH


NS-3 is a time-discrete packet-level simulator

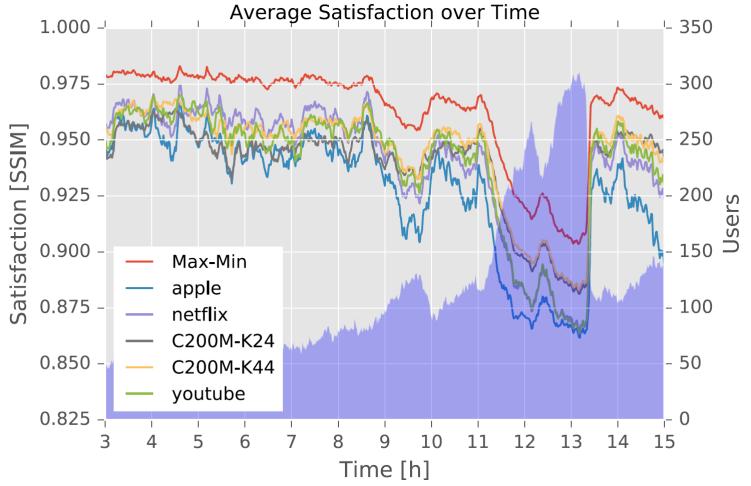
- MTU: 1500 bytes
- TCP New Reno, w/ segment size (MSS) of 1430 bytes
- Bottleneck link: 100, 200 Mbit/s and 15 ms RTT



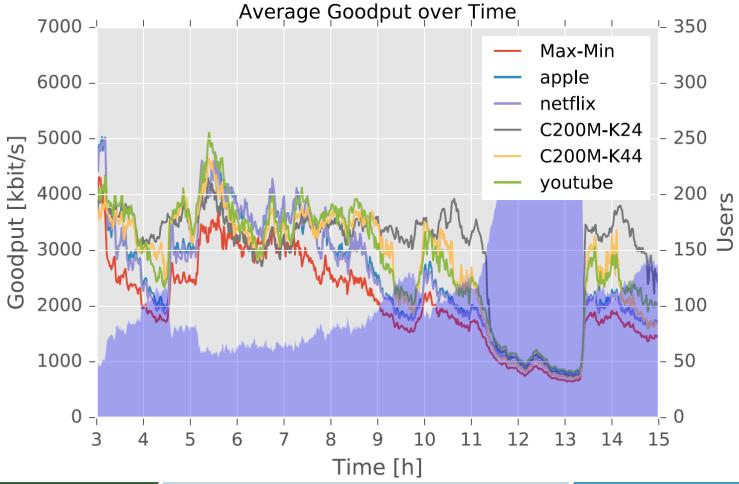
CONCLUSIONS

- The choice of representations has an impact on satisfaction
- Researchers need to consider this when evaluating their DASH adaptation strategies
- Optimized representations [16] are good, but don't work very well in all situations
- Data and simulation framework available at http://concert.itec.aau.at/NOSSDAV_2016/ and https://github.com/ChristianKreuzberger/AMuSt-Simulator/

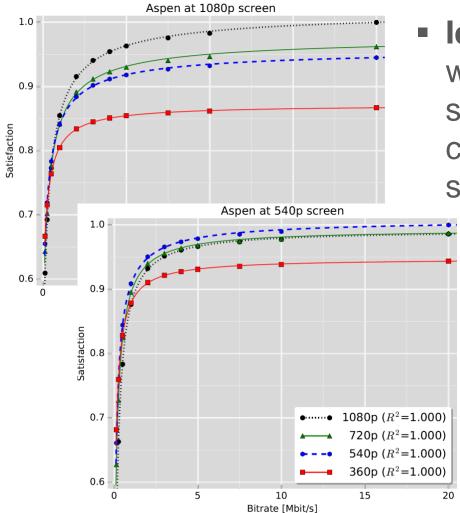
THANK YOU!

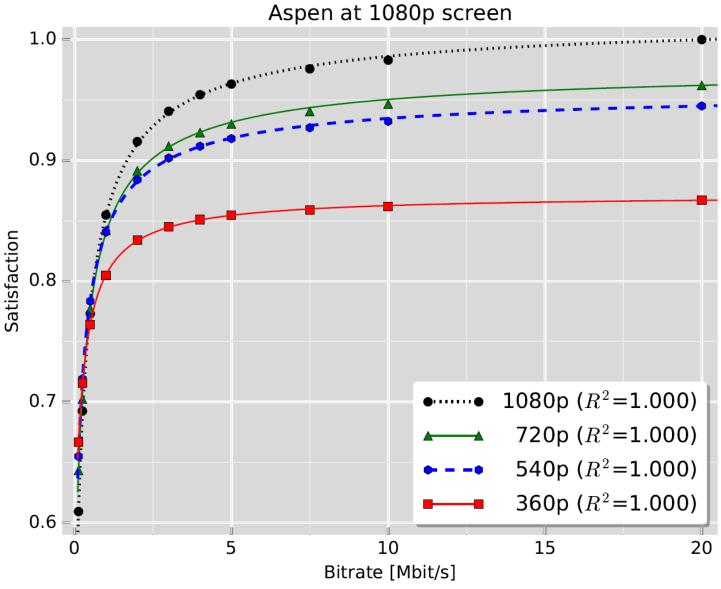


BACKUP SLIDES

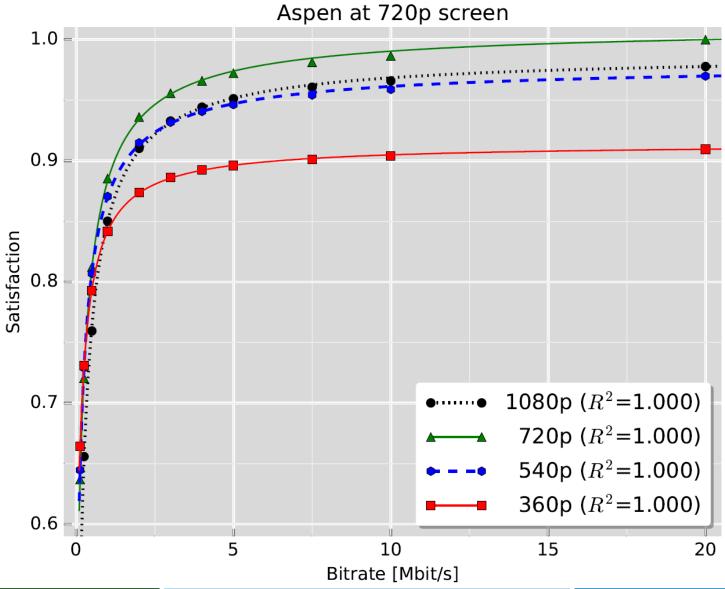


RESULTS: AVG. USER SATISFACTION (BOTTLENECK 200 MBIT/S)

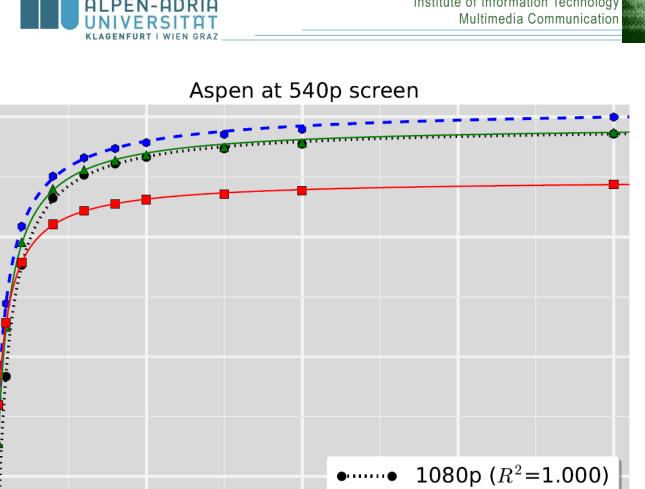




USER SATISFACTION



- Idea: lower bit rate required when satisfying a user with a low screen resolution (360p) compared to a user with a high screen resolution (540p–1080p)
 - Encoded 4 video sequences
 - **3**60p, 540p, 720p, 1080p
 - 100 kbit/s 20 Mbit/s





720p (R^2 =1.000)

540p (R^2 =1.000)

1.0 =

0.9

8.0

0.7

Satisfaction