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ABSTRACT
Adaptive streaming strategies over HTTP allow to serve

heterogeneous video users with varying demands. By pro-
viding different encoded versions (representations) of each
video sequence on the server, clients have the freedom to
select a representation that best fits their needs. While the
topic of selecting a representation based on a pre-defined
set is covered very well in the literature, the problem of
how to properly select the representation set stored at the
main server is usually an overlooked challenge. In this work,
we provide an analysis on how the choice of representations
on the server impacts the clients’ quality. This is achieved
by conducting NS-3 based simulations with a total of 10k
users and up to 300 concurrent DASH clients for several
recommended sets (e.g., Netflix, YouTube, and Apple), and
measuring the experienced quality over a timespan of 24
hours. The results show that under heavy load (at peak
hours) there is still room for improvement.

CCS Concepts
•Information systems → Multimedia streaming;

Multimedia content creation; •Social and profes-
sional topics→ System management; Network operations;

Keywords
Dynamic Adaptive Streaming over HTTP; Representa-

tions; Encoding

1. INTRODUCTION
While multimedia streaming is becoming more and more

popular, the large amount of data caused by multimedia
streaming needs to be efficiently delivered to highly hetero-
geneous clients over resource-limited networks. To reach this
goal, streaming technologies need to be i) highly adaptive to
both users and network conditions, and ii) highly scalable
with the size of the user population. HTTP-based adaptive
streaming technologies are able to cover both key aspects,
as demonstrated by the recently standardized MPEG-DASH
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(Dynamic Adaptive Streaming over HTTP) [14], henceforth
denoted as DASH.
In a typical DASH system (Figure 1), each video is en-

coded at different bit rates, quality levels, and resolutions.
Each encoded version, also called representation, is stored
at the server, and split into temporally successive and equal
size segments (e.g., two seconds). For each video, available
representations are described in a so called Media Presenta-
tion Description (MPD) file. The segments can be decoded
independently (self-contained), enabling clients to dynam-
ically switch between different representations at segment
boundaries. The decision of selecting an appropriate rep-
resentation is carried out by each client independently and
implemented in the so called adaptation logic.
Serving many users on the Internet with a good quality

of experience (i.e., no playback stalls, high video quality)
is still an open issue. For example, Conviva [4] reported
that in 2014, 28.8% of streaming sessions were affected by
video playback stalls (buffering) and 58.4% received a bad
video quality. During the last years, tremendous effort has
been devoted to analyzing and solving these issues on the
client side. However, only few works consider using more
than a single recommended representation set. Often a very
small number of concurrent clients (usually 1 to 5) is con-
sidered, if at all, resulting in a very static workload for the
network/server. In this work we take the content provider’s
perspective and study the impact of different recommended
representation sets on a dynamic workload with up to 300
concurrent clients with various demands and device char-
acteristics. The objective of this paper is to investigate
how representation sets used by YouTube, Netflix, and Ap-
ple perform against an optimized choice of representations
[16] in a multimedia streaming scenario with a large user
base and a heterogeneous set of devices (e.g., smartphones,
tablets, HD TVs, Full HD TVs).
To achieve this, we implemented an HTTP server and

DASH clients in NS-3 [7], a discrete-event network simula-
tor. For our user base, we generated a 24-hour streaming
scenario based on YouTube traces [12] and device statistics
for Hulu and Netflix [10]. As metric we selected user sat-
isfaction [16], modeled by Structural Similarity (SSIM) [18]
based on the devices’ spatial screen resolutions.
The contributions of this paper are as follows:

• we empirically assess the bit rates and resolutions of
videos hosted by YouTube;
• we investigate the behavior of different recommended
and optimized representation sets of Netflix, YouTube,
Apple, and those obtained by solving the ILP from [16]



under a scenario with real traffic traces;
• we further provide the source code used to conduct the
simulations.

We will show that the recommended representation sets
differ significantly in their performance with respect to user
satisfaction. We further show that the optimized represen-
tations obtained by solving the ILP given in [16] do provide
an improvement in comparison to the recommended repre-
sentation sets, but there is still room for improvement.
The remainder of this paper is organized as follows. A

brief overview of related work is provided in Section 2. Sec-
tion 3 explains the basics of our evaluation setup, including
NS-3 simulations, the user population, as well as the rec-
ommended representations used. We discuss results of the
evaluations in Section 4 and conclude the paper in Section 5.

2. RELATED WORK
Adaptive streaming is an active research area, especially

when considering DASH [14]. However, efforts for improving
users’ multimedia streaming experience are focused on the
content distribution and the client side (e.g., adaptation log-
ics). Despite the growing interest in studying the provider’s
side of the problem [15, 2, 21, 5], only few works [15, 16]
consider the impact of different representation sets used.
Remaining works usually consider one pre-encoded recom-
mended representation set for their evaluations.
In [15], the authors study adaptive streaming systems for

live video streaming and claim that different representation
sets may affect the behaviors of adaptation logics. How
to efficiently create the representation set has been inves-
tigated in [2, 21]. However, [2] investigates the efficiency of
transcoding operations in the cloud for live video streaming
applications, while [21] optimizes the subset of representa-
tions that should be cached in the network. Finally, DASH
from a provider’s perspective is analyzed also in [5]. The au-
thors do not focus on the representation set design; rather,
they study the provider’s gain in re-shaping users’ requests.
Recently, Toni et al. [16] introduced the problem of de-

termining optimal representation sets based on client and
network settings. The authors formulated an Integer Lin-
ear Program (ILP) for finding an optimal representation set
with respect to a given satisfaction function. They com-
pared the resulting representation set with recommended
ones (YouTube, Netflix and Apple) and showed the gain
of the optimal set in terms of both, users’ satisfaction and
storage constraints. However, the analysis of the system per-
formance is mainly static and theoretical. The dynamics of
users joining and leaving and the impact of concurrent users
on the CDN are not considered. Furthermore, an experimen-
tal evaluation of the performance of different representation
sets is still missing in nowadays’ literature.

3. EVALUATION SETUP
In this section, we provide the details of the evaluation

setup, ensuring that our results can be re-produced by other
researchers. First, we discuss the technical parts of the NS-
3 based simulations, followed by how we generated the user
base and the 24-hour streaming scenario. Then we list rec-
ommended representations by YouTube, Netflix, and Apple,
as well as representations determined by solving an opti-
mization problem. We further describe how the metric used
to measure user satisfaction has been derived.

Figure 1: The considered DASH scenario, serving multiple
encoded representations to users over a common bottleneck.

3.1 NS-3 and DASH
Since our goal was to create an adaptive streaming behav-

ior as close to reality as possible, we decided to extend NS-3
with a client and server application capable of persistent
HTTP connections. Based on libdash [8], we implemented
a multimedia player with a video playback buffer, capable
of simulating video playback. For the client-based adapta-
tion, we implemented a simple rate-based adaptation logic,
which selects the next segment’s representation based on
the last experienced goodput. We chose a rate-based adap-
tation logic, since the optimization model of [16] focuses on
rate-adaptive control as well. A simplified network model
as shown in Figure 1 was used, since our main concern was
to investigate a single bottleneck link with many concurrent
users.
To ensure efficient and realistic TCP behavior, we set up

the NS-3 scenario to use TCP New Reno with a TCP seg-
ment size (MSS) of 1430 and an MTU of 1500 bytes. All
routers were configured to use a RED (Random Early Detec-
tion) queue. The bottleneck link was set to a capacity of C ∈
{100, 200} Mbit/s. All client connections were configured to
their respective link capacities (see Section 3.2). The total
RTT between each client and the server was 15 ms. In or-
der to provide reproducibility of our results, we provide the
source code of our client implementations as well as the used
datasets at http://concert.itec.aau.at/NOSSDAV_2016/.

3.2 User Population
We implemented an adaptive streaming scenario consist-

ing of heterogeneous users that dynamically leave and join
over a timespan of 24 hours. To achieve (close to) realis-
tic evaluations, we combined publicly available traces and
datasets on users, user demands, and device statistics [10,
12, 16].
First, we generated a heterogeneous user base (consisting

of 10,808 users) by randomly assigning clients to one out of
four device categories as described in Table 1. We set the
probability p, which denotes the probability of a category to
be chosen, based on a survey of Netflix and Hulu users gath-
ered by Nielsen in 2013 [10]. Each category is characterized
by the display’s spatial resolution and the network connec-
tion. The link capacity of each device is drawn uniformly
from the interval [cmin, cmax], which denote the minimum
and maximum link capacities for each device, as in [16].
To model the population with varying user demands, we

considered YouTube traces provided by [12]. The dataset
provides the number of users watching a specific video at
a certain point in time, with one measure every 5 minutes.
This measure is available for different videos and for sev-
eral time instants. From this dataset, we selected four video



Device Type (Connection) Screen Res. cmin cmax p
Smartphone (3G, WiFi) 360p, 540p 0.4 4 21.4%
Tablet (3G, WiFi) 540p, 720p 0.4 4 14.8%
Laptop (ADSL) 720p, 1080p 0.7 10 32.1%
HDTV (FTTH, Cable) 720p, 1080p 1.5 25 31.7%

Table 1: Devices with available screen resolutions and
min/max link capacities (cmin/cmax) expressed in Mbit/s.
p denotes the distribution of those devices [10].

Id Video Name Category Length #Users
1 Touchdown Pass Sports 60 min 579
2 Snow Mnt News 10 min 8,209
3 Big Buck Bunny Cartoon 20 min 1,823
4 Aspen Movie 90 min 197

Table 2: Test sequences from Xiph [19] for our evaluation
and the number of users that requested it in our scenario.
Videos have been chosen as representatives for their cate-
gories and are used to determine the user satisfaction met-
ric.

categories: Sports, News, Cartoon, Movie. These video cat-
egories were popular enough such that they had a large and
fluctuating number of users during the day.
In order to implement the users’ requests over an entire

day based on these data and keep the simulations compu-
tationally feasible, we needed to scale down the number of
concurrent streams by a factor of 150. This resulted in a
video streaming scenario with at least 50 and at most 300
concurrent users at any point in time. (Still, the simula-
tions take several weeks.) The resulting cumulative number
of concurrent users is depicted in Figure 2 for 2014-1-6.
The requests for each category depicted in Figure 2 are

elastic over time and differ between the four categories. For
instance, the Sports category is requested rarely for most of
the day, and highly requested over a small portion of the day;
the News category is popular the whole day, while Movie is
more intensely requested between 15 and 20 hours. Finally,
we considered the four video categories to consist of video
sequences with a pre-defined duration, as listed in Table 2.
Based on the number of concurrent users at any point

in time in the dataset, we start or stop, respectively, video
streaming clients. In addition, clients stop streaming once
the video has finished (according to the video’s length).
Shorter sequences, such as news, are requested more often
than longer sequences, such as movie or sports. This is also
expressed by the number of requests per day in Table 2.

3.3 Recommended Representation Sets
In this section, we investigate different recommended rep-

resentation sets for hosting video content, as provided by
YouTube, Netflix, and Apple. The representations of YouTube
were experimentally derived, whereas Apple [3] and Net-
flix [9] explicitly provide the encoding parameters. A sum-
mary of those three sets is provided in Table 3.
YouTube. To the best of our knowledge, there are no

publicly available recommendations for the representation
sets for videos hosted on YouTube’s servers. The only rec-
ommendation provided by YouTube itself consists of bit
rates for streaming live videos with their platform [20]. To
bridge this gap, we carried out an experimental analysis of
representations used at YouTube by parsing metadata of
51,288 YouTube videos. We deem this as necessary for this
evaluation because YouTube is one of the most important

Figure 2: Number of concurrent users per category for 2014-
1-6 in a stacked plot (users for categories are added on top
of each other).

Name Resolution Bit Rates [kbit/s]

YouTube

1080p (1920x1080) 4,072
720p (1280x720) 2,168
540p (960x540) 1,109
360p (640x360) 110 247 606

Netflix

1080p (1920x1080) 4,300 5,800
720p (1280x720) 2,350 3,000
540p (960x540) 1,050 1,750
360p (640x360) 235 375 560 750

Apple

1080p (1920x1080) 11,000 24,000 39,000
720p (1280x720) 2,500 4,500
540p (960x540) 1,800
360p (640x360) 110 200 400 600 1,200

Table 3: Summary of recommended representation sets from
YouTube (experiment), Netflix [9], and Apple [3].

platforms for user-generated videos, with more than a bil-
lion videos played every day1. As YouTube provides MPD
files for most of their videos, we decided to evaluate roughly
51k random videos from YouTube by parsing the MPD files.
The resulting video bit rates of our evaluations conducted
in October 2015 cover only MPEG-4/AVC and are provided
in Table 4. Extrapolating the mean bit rate value, we built
the representation set for YouTube provided in Table 3. For
simplicity, the results for the original resolutions 144p, 240p,
and 360p have been associated to 360p, and 480p to 540p.
Optimized Set. Toni et al. [16] proposed an optimiza-

tion problem for the selection of the representation set that
maximizes the average satisfaction of users. We applied this
model to our adaptive streaming scenario and generated op-
timized representations as exemplified in Table 5, where C
denotes the bottleneck capacity in Mbit/s and K the total
number of representations for all videos.
Max–Min Model. In order to obtain an upper per-

formance bound, we assume that every client will try to
get as much goodput as possible, regardless of any adap-
tive streaming mechanism (adaptation logic, video playback
buffer, ...). Let n be the number of clients. The throughput

1https://www.youtube.com/yt/press/en/statistics.html



Res./FPS #Videos Avg. BR [kbit/s] (2.5, 50, 97.5%) percentiles [kbit/s]
2160p/24-30 29 21,580 [12,416− 22,167− 30,083]
1440p/24-30 102 8,008 [2,305− 7,715− 17,346]
1080p/48-60 222 5,391 [3,549− 5,530− 5,635]
1080p/24-30 13,891 4,072 [1,871− 4,129− 4,366]
720p/48-60 828 3,136 [2, 032− 3, 316− 3, 401]
720p/24-30 28,722 2,168 [1,025− 2,204− 2,291]
720p/12-15 157 1,424 [379− 1,251− 2,308]
480p/24-30 40,726 1,109 [496− 1,105− 1,149]
480p/12-15 348 864 [221− 692− 1, 164]
360p/24-30 45,035 606 [236− 603− 626]
360p/10-15 530 385 [111− 344− 632]
240p/24-30 49,127 247 [246− 250− 294]
144p/12-15 51,288 110 [108− 112− 129]

Table 4: Empirical YouTube bit rates (BR) [kbit/s] for video
streaming. Values in brackets display the 2.5%, 50%, and
97.5% percentiles. Important representations are marked
bold.

Video Id Resol. C100M-K24
kbit/s

C100M-K44
kbit/s

1 1080p 586 387 669
720p - 344 606
540p 709 709
360p 297 375 297 375 558

2 1080p 619 745 1190 526 619 745 1,042
1,380

720p 297 534 676 1,093 297 370 534 676
777 1,093 1,361

540p 173 407 529 747 329 529 620 747
1,242

360p 315 568 220 315 568
3 1080p - 819

720p 761 533 761
540p 553 320 553 785
360p 245 245 595

4 1080p - -
720p - 1448
540p 669 1,081 570 669 798 1,081
360p 289 561 289 360 561

Table 5: Optimized representation sets [16], exemplified for
C = 100 Mbit/s, K = 24 and K = 44 representations.

xi of client i (1 ≤ i ≤ n) is affected by two bottlenecks: a)
the local link capacity ci, and b) the shared bottleneck to-
wards the server. For the shared bottleneck we implemented
a Max-Min fairness model (a fairness measure applicable for
TCP’s congestion control) and solved it with an iterative ap-
proach [11].
Based on the elastic user population (Section 3.2) we cal-

culated the expected throughput for all users at any point
in time. As detailed in Section 3.1, our TCP packets have
1430 bytes payload with 1500 bytes packet size, meaning
that we have a goodput of 95.33%. The goodput (0.9533 ·
throughput) values serve as input for our satisfaction model
(Section 3.4), leading to satisfaction values at any point in
time for all clients. Essentially, this model assumes that
there is an infinite number of representations available at
the main server. This assumption will not hold in practice,
but it allows to investigate the gap between the proposed
representation sets and the theoretical bounds.

3.4 User Satisfaction
Our metric to assess the users’ satisfaction [16] is an ob-

jective video quality based on the users’ spatial screen reso-
lution. We assess video quality by evaluating the SSIM [18]

Figure 3: Satisfaction curves for Aspen (encoded at various
spatial resolutions) measured for an 1080p screen.

of multiple videos with the recommended representations
provided in Table 3. While [16] used a 1-VQM metric, in
this paper we prefer SSIM since it has been shown that
SSIM models the characteristics of the human eye better
than other metrics [17]. However, the general idea of the
resulting satisfaction curve stays the same.
The notion of satisfaction we use is adopted from [16, 6]

and considers that a lower bit rate is required to satisfy a
user with a 360p screen, than for a user with a 540p, 720p,
or 1080p screen. In addition, a user with a 1080p screen
will require the highest bit rate to be satisfied. To achieve
this, we determined SSIM values of encoded videos by up- or
down-scaling them, respectively, to a certain spatial screen
resolution and comparing them to the source video with the
same resolution. Due to space constraints we can only show
one of the fitting curves in Figure 3.
First, we selected test sequences that are representative

for their categories, as listed in Table 2. We encoded the
sequences using x264 (an MPEG-4/AVC encoder) with two-
pass encoding, using the resolutions listed in Table 3, and
various bit rates between 100 kbit/s and 20 Mbit/s. This al-
lows us to interpolate/predict the SSIM value for arbitrary
bit rates. The encoder was configured to produce DASH-
compliant files with a segment length of two seconds con-
taining 48 video frames. This segment length was chosen
because it provides an acceptable trade-off [13] between en-
coding efficiency and the dynamic behavior introduced by
the adaptation logic.
Second, to obtain SSIM values for all four spatial reso-

lutions, we up- and down-scaled (using ffmpeg with bicubic
scaling) all encoded videos to four spatial resolutions (360p,
540p, 720p, 1080p), and compared them with the respec-
tive source videos for each spatial resolution. The resulting
SSIM value is then associated with the 4-dimensional tuple
video id, screen resolution, representation resolution, repre-
sentation bit rate.
We fitted the bit rate and the resulting satisfaction values

using Equation 1, similar to [6], where x is the bit rate and
fv,su,sr (x) (f : N × N × N × R≥0 → [0, 1]) is the predicted
satisfaction for video v, screen resolution su, and represen-
tation resolution sr.

fv,su,sr (x) = c− a

(x + d)b
(1)



Figure 4: Average satisfaction and goodput values over time for a bottleneck bandwidth of 100 Mbit/s.

Figure 5: Average satisfaction and goodput values over time for a bottleneck bandwidth of 200 Mbit/s.

Equation 1 allows us to interpolate objective quality based
on bit rates between 125 kbit/s and 20 Mbit/s. As shown
by the example in Figure 3, the curve fits the data almost
perfectly (R2 values of other curves are also close to 1.0).

4. RESULTS
Figures 4 and 5 show the average user satisfaction and

goodput over time for the discussed representation sets (cf.
Section 3.3). Due to space constraints we show a 12 hour
excerpt from 3 to 15 hours. The blue area in the back-
ground sketches the (total) number of concurrent users as
illustrated in Figure 2, the lines show the average satisfac-
tion and goodput on a per minute scale.

4.1 Satisfaction Analysis
The representation sets provided by Apple (cf. Table 3) do

perform worst in both cases with respect to user satisfaction
(bottleneck of 100 Mbit/s and 200 Mbit/s, cf. Figures 4
and 5). Apple recommends that there should be a 1200
kbit/s representation for a resolution of 360p, which leads
to a low satisfaction for devices using a resolution of 540p
or higher (see Figure 3). Representation sets recommended
by Netflix and YouTube provide a more balanced set (with
respect to bit rate) of representations for each resolution
which explains the higher satisfaction, especially when there
is a peak of users (cf. Figures 4 and 5, from 9 to 15 hours).
The optimized representation sets (according to [16]) indi-

cated by C100M-K24, C100M-K44, C200M-K24 and C200M-
K44, provide a higher satisfaction than the recommended

representation sets by Netflix, YouTube, and Apple when
the bottleneck link is congested (9 to 15 hours). In the case
where the bottleneck link has a bandwidth of 200 Mbit/s,
the representation sets do not differ significantly over time,
except when there are peaks in the number of concurrent
users.
The Max–Min model provides us with an upper bound

for the satisfaction (assuming an infinite number of repre-
sentations as explained in Section 3.3). It is evident from
Figures 4 and 5 that a higher bottleneck bandwidth leads
to a greater gap between the satisfaction obtained by the
Max–Min model and the optimized and recommended rep-
resentation sets. This provides room for improvement, es-
pecially during peak hours. For a bottleneck bandwidth of
100 Mbit/s (having heavy congestion during peak hours),
the optimized representation sets are close to the results ob-
tained by the Max–Min model.

4.2 Goodput Analysis
For every segment downloaded by each client we measure

the time needed and the number of bits transferred, result-
ing in the goodput value. While a segment belongs to a
certain representation with a pre-defined bit rate, the good-
put can be lower or higher than this bit rate. Furthermore,
the goodput can fluctuate heavily. Figures 4 and 5 show the
average goodput (right side) of all clients active at a given
time instant, thus the more clients are active, the lower the
average goodput.
As already shown by [1], adaptive streaming clients fol-



low an on/off pattern when their video playback buffers are
filled. This leads to fluctuations in the goodput which may
have a negative impact on the client’s adaptation logic. We
noticed the same effect with the set of optimized represen-
tations (C100M-K24 and C100M-K44) in the 100 Mbit/s
scenario, which achieve a higher goodput (e.g., between 5
and 8 hours in Figure 4) than the vendor representations.
This does not indicate that C100M-K24 and C100M-K44

perform better than the other representations. This behav-
ior is caused by the bit rates of the representations. Due to
C100M-K24 and C100M-K44 only having representations
with a bit rate of up to 1400 kbit/s, there is plenty of capac-
ity left (between 5 and 8 hours) for the active clients. Ven-
dor recommendations provide representations with higher
bit rates (up to at least 4 Mbit/s), which leads to a higher
link utilization, and therefore a lower average goodput.

5. CONCLUSION
The results obtained show that choosing a different repre-

sentation set clearly has an impact on the users’ satisfaction.
Moreover, we were able to partially confirm results from [16],
where the authors already showed that recommended repre-
sentations are not always the best choice.
Our results show that the recommended representation

sets of Netflix, YouTube, Apple, and the optimized set of
representations work well to a certain extent, but especially
in peak hours where the bottleneck link(s) are fully utilized
they do not provide enough flexibility for the heterogeneous
(with respect to devices) clients. This motivates future work
in optimizing representation sets. However, calculating op-
timized representation sets as proposed in [16] induces a
certain amount of computational effort. Thus, future work
shall focus on collecting statistics (e.g., user base over a
certain time) and then optimizing representations based on
data from the past towards providing an increased user satis-
faction while maintaining a reasonable computational effort.
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