
Creation, Authentication and

Recovery of Passwords

Dipl.-Ing. Christian Kreuzberger
Institut für Informationstechnologie
Institut für Mathematik

Outline

Christian Kreuzberger 2

• Introduction

• Master Thesis

• Strength of Passwords

• What we can learn from mistakes

Identification vs.
Authentication

Christian Kreuzberger 3

• Password – something you know

• Chip Card/E-Mail – something you have

• Biometrics – something you are

• Password + E-Mail is widely accepted as
Authentication!

• Better: Combination of all 3

Please enter your password

Christian Kreuzberger
October 10th, 2014

4

• Computer

• E-Mail

• Online Banking

• Mobile/Smart Phones

• Buildings/Rooms

• ATMs

Alternatives

Christian Kreuzberger 5

• Iris Scan

• Fingerprint

• Chip Cards

• Gestures

• Images

• Voice Analysis

• …

Problems with
Passwords

Christian Kreuzberger 6

• Passwords must/should be
– easy to remember,

– sufficiently long and

– unique (do not reuse passwords).

• Login-Systems must
– create and verify passwords,

– provide an option to recover a forgotten password

– and store and transmit passwords in a secure way.

• Creation
• Authentication
• Recovery

Master Thesis

Christian Kreuzberger 7

Master Thesis

Christian Kreuzberger 8

• Intro

– Strength

– Creating Passwords (RNG, PUF, KDF), Recovery

• Storing Passwords

– Websites (Server)

– Browsers (Client)

– Operating Systems

– Chip Cards

Master Thesis

Christian Kreuzberger 9

• Attacks

– Brute Force

– Dictionaries

– Rainbow Tables

• Alternatives

– KeyPass

– Smartphone + Key Derivation Functions

– Chipcards

Strength of passwords

Christian Kreuzberger 10

Entropy

Christian Kreuzberger 11

• Compression: “How many bit do we need to store a string
using a limited alphabet”

• Here: “How many bit do we need to guess”

• Common: Alphanumeric Alphabet with
 N = 26 + 26 + 10 = 62 characters

• ASCII: 95 printable characters (128 total)

Entropy
Length vs Alphabet – ct’ed

Christian Kreuzberger 12

• 2^5 = 32

• 2^6 = 64

• 2^7 = 128

• Chinese?

Entropy
Length vs Alphabet – ct’ed 2

Christian Kreuzberger 13

• Examples:

– N=62, L=8: H=47.63 bit

– N=62, L=12: H=71.45 bit

– N=84, L=8: H=51.13 bit

– N=84, L=12: H=76.71 bit

– N=95, L=8: H=52.56 bit

– N=95, L=12: H=78.84 bit

• Increasing length = increasing security?

NIST
Password strength

Christian Kreuzberger 14

• Second approach by NIST: Measuring the
strength of a password with rules:
– First Character: 4 bit

– Characters 2-8: 2 bit per character

– Characters 9-20: 1.5 bit per character

– Above: 1 bit per character

– Upper + Lower: +6 bit

– Dictionary Search: +6 bit

• Increasing length = increasing redundancy!

We can learn from mistakes

Christian Kreuzberger 17

UNIX Password Generator
(1979)

Christian Kreuzberger 18

• System supplied “secure” passwords

– L=8 characters

– Lower case letters and digits (N=36)

– Entropy: 41.36 bit (112 years)

• PRNG: 2^15 starting values (Entropy: 15 bit)

R. Morris, K. Thompson: Password Security: A Case History (Communications

of the ACM, Volume 22, 1979)

What we learned
from mistakes

Christian Kreuzberger 19

• Use PRNG with a sufficiently large seed space

UNIX Password Store
/etc/passwd (197x)

Christian Kreuzberger 20

• Username + Password stored in /etc/passwd

• Later: /etc/shadow + one-way-function

• Everybody on the system could read it

• Everything was fine, until…
$> ftp

open target.com

Login: ano@nymous.org

get /etc/passwd

disconnect

What we learned
from mistakes

Christian Kreuzberger 21

• Use PRNG with a sufficiently large seed space

• Use strong(er) one-way functions to store
passwords

• NEVER store passwords in plain text

• OS responsible for restricting access to files

Windows Password Store
LMHASH (1998)

Christian Kreuzberger 22

• Max. 14 OEM-characters

• Input: p’ = uppercase(substring(p,0,14))

• If less than 14 bytes, add null-bytes;

• Split password into two halves p’ = p1 || p2

• Calculate HASH: h = h1 || h2

• Result: 16 byte “hash” value

Windows Password Store
LMHASH (1998) – ct’ed

Christian Kreuzberger 23

• Max. 14 OEM-characters

• Input: p’ = uppercase(substring(p,0,14))

• Assuming alphanumeric numbers, we lost 11
bit of entropy, but 72 bit is still a very good
result.

Windows Password Store
LMHASH (1998) – ct’ed 2

Christian Kreuzberger 24

• Split password into two halves p’ = p1 || p2

• Calculate “hash”: h = h1 || h2

• Case 1: Length < 8
h2 = DES(KGS!@#$%,0x00000000) =

0xAA 0xD3 0xB4 0x35 0xB5 0x14 0x04 0xEE

• Case 2: Length >= 8

Windows Password Store
LMHASH (1998) – ct’ed 3

Christian Kreuzberger 25

• Split password into two halves p’ = p1 || p2

• Calculate “hash”: h = h1 || h2

• Case 2: Length >= 8

• Instead of we now have

What we learned
from mistakes

Christian Kreuzberger 26

• Use PRNG with a sufficiently large seed space

• Use strong(er) one-way functions to store
passwords

• NEVER store passwords in plain text

• OS responsible for restricting access to files

• Microsoft (20 years later): Use strong(er) one-
way functions for authentication

EuroCheque ATM PINs
1981 – 1997 (Germany)

Christian Kreuzberger 27

• 1997: M. Kuhn: Probability Theory for Pickpockets – ec-PIN guessing

• Showed that success probability for breaking in can be increased from 0.03 % to 0.7 %

More mistakes…

Christian Kreuzberger 28

Input Devices

Christian Kreuzberger 29

• Smudge Attack

• Thermal Imaging

Most used passwords

Christian Kreuzberger 30

Most used PINs

Christian Kreuzberger 31

Creation, Authentication and

Recovery of Passwords

Dipl.-Ing. Christian Kreuzberger
Institut für Informationstechnologie
Institut für Mathematik

